Axonal degeneration in multiple sclerosis: can we predict and prevent permanent disability?

نویسندگان

  • Jae Young Lee
  • Kasra Taghian
  • Steven Petratos
چکیده

Axonal degeneration is a major determinant of permanent neurological impairment during multiple sclerosis (MS). Due to the variable course of clinical disease and the heterogeneity of MS lesions, the mechanisms governing axonal degeneration may differ between disease stages. While the etiology of MS remains elusive, there now exist potential prognostic biomarkers that can predict the conversion to clinically definite MS. Specialized imaging techniques identifying axonal injury and drop-out are becoming established in clinical practice as a predictive measure of MS progression, such as optical coherence tomography (OCT) or diffusion tensor imaging (DTI). However, these imaging techniques are still being debated as predictive biomarkers since controversy surrounds their lesion-specific association with expanded disability status scale (EDSS). A more promising diagnostic measure of axonal degeneration has been argued for the detection of reduced N-acetyl aspartate (NAA) and Creatine ratios via magnetic resonance spectroscopic (MRS) imaging, but again fail with its specificity for predicting actual axonal degeneration. Greater accuracy of predictive biomarkers is therefore warranted and may include CSF neurofilament light chain (NF-L) and neurofilament heavy chain (NF-H) levels, for progressive MS. Furthermore, defining the molecular mechanisms that occur during the neurodegenerative changes in the various subgroups of MS may in fact prove vital for the future development of efficacious neuroprotective therapies. The clinical translation of a combined Na+ and Ca2+ channel blocker may lead to the establishment of a bona fide neuroprotective agent for the treatment of progressive MS. However, more specific therapeutic targets to limit axonal damage in MS need investigation and may include such integral axonal proteins such as the collapsin response mediator protein-2 (CRMP-2), a molecule which upon post-translational modification may propagate axonal degeneration in MS. In this review, we discuss the current clinical determinants of axonal damage in MS and consider the cellular and molecular mechanisms that may initiate these neurodegenerative changes. In particular we highlight the therapeutic candidates that may formulate novel therapeutic strategies to limit axonal degeneration and EDSS during progressive MS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 129: The Role of Overexpression Transcription Factor BRN 4 in Multiple Sclerosis

Adult neurogenesis is a process of producing nerve cells from their progenitor that occurs in some areas in the brain such as the hypothalamus. Low activity in this area plays a role in neural degeneration and diseases such as multiple sclerosis, epilepsy and depression. MS is a neurodegenerative disease with a permanent disability that the main reason for it is axonal degeneration and neuronal...

متن کامل

Contribution of the Degeneration of the Neuro-Axonal Unit to the Pathogenesis of Multiple Sclerosis

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. In recent years, it has become more evident that neurodegeneration, including neuronal damage and axonal injury, underlies permanent disability in MS. This manuscript reviews some of the mechanisms that could be responsible for neurodegeneration and axonal damage in MS and highlights the potential role...

متن کامل

Inhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis

Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...

متن کامل

Mechanisms of neuronal damage in multiple sclerosis and its animal models: role of calcium pumps and exchangers.

Multiple sclerosis is an inflammatory, demyelinating and neurodegenerative disorder of the central nervous system. Increasing evidence indicates that neuronal pathology and axonal injury are early hallmarks of multiple sclerosis and are major contributors to progressive and permanent disability. Yet, the mechanisms underlying neuronal dysfunction and damage are not well defined. Elucidation of ...

متن کامل

P 153: Neuroinflammation in Multiple Sclerosis

Multiple sclerosis (MS) is a complex disease which is correlated with increasing inflammatory factors, demyelination and axonal loss. In this auto-immune disease, Neuroinflammation is mediated by different types of T cells with macrophage/microglial activation and B cells involvement that interact in a collaborative manner. Focal inflammation is the main cause for the onset of relapses and coul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014